VIDYA BHAWAN BALIKA VIDYA PITH शक्तिउत्थानआश्रमलखीसरायबिहार

Class 09. Sub-.Maths Date 23.08..2021

Teacher Name – Krishna Kanhaiya

1. In an isosceles triangle ABC, with AB = AC, the bisectors of B and C intersect each other at O. Join A to O. Show that:

(i) OB = OC (ii) AO bisects A

Solution:

Given:

AB = AC and

the bisectors of B and C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

B = C

½ B = ½ C

 \Rightarrow OBC = OCB (Angle bisectors)

 \therefore OB = OC (Side opposite to the equal angles are equal.)

(ii) In $\triangle AOB$ and $\triangle AOC$,

AB = AC (Given in the question)

AO = AO (Common arm)

OB = OC (As Proved Already)

So, $\triangle AOB \ \triangle AOC$ by SSS congruence condition.

BAO = CAO (by CPCT)

Thus, AO bisects A.

2. In \triangle ABC, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that \triangle ABC is an isosceles triangle in which AB = AC.

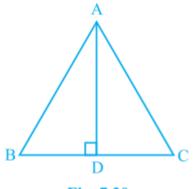


Fig. 7.30

Solution:

It is given that AD is the perpendicular bisector of BC

To prove:

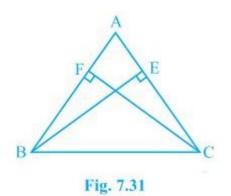
AB = AC

Proof:

In \triangle ADB and \triangle ADC,

AD = AD (It is the Common arm)

ADB = ADC


BD = CD (Since AD is the perpendicular bisector)

So, $\triangle ADB \triangle ADC$ by **SAS congruency criterion**.

Thus,

AB = AC (by CPCT)

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Solution:

Given:

(i) BE and CF are altitudes.

(ii) AC = AB

To prove:

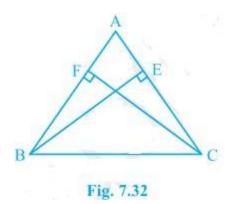
BE = CF

Proof:

Triangles $\triangle AEB$ and $\triangle AFC$ are similar by AAS congruency since

A = A (It is the common arm)

AEB = AFC (They are right angles)


AB = AC (Given in the question)

 $\therefore \Delta AEB \Delta AFC$ and so, BE = CF (by CPCT).

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that

(i) $\triangle ABE \triangle ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle.

Solution:

It is given that BE = CF

(i) In $\triangle ABE$ and $\triangle ACF$,

A = A (It is the common angle)

AEB = AFC (They are right angles)

BE = CF (Given in the question)

 \therefore $\triangle \mathsf{ABE}\ \triangle \mathsf{ACF}$ by **AAS congruency condition**.

(ii) AB = AC by CPCT and so, ABC is an isosceles triangle.